Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing
نویسندگان
چکیده
Exosomes are vesicles which have garnered interest due to their diagnostic and therapeutic potential. Isolation of pure yields of exosomes from complex biological fluids whilst preserving their physical characteristics is critical for downstream applications. In this study, we use 100 nm-liposomes from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol as a model system as a model system to assess the effect of exosome isolation protocols on vesicle recovery and size distribution using a single-particle analysis method. We demonstrate that liposome size distribution and ζ-potential are comparable to extracted exosomes, making them an ideal model for comparison studies. Four different purification protocols were evaluated, with liposomes robustly isolated by three of them. Recovered yields varied and liposome size distribution was unaltered during processing, suggesting that these protocols do not induce particle aggregation. This leads us to conclude that the size distribution profile and characteristics of vesicles are stably maintained during processing and purification, suggesting that reports detailing how exosomes derived from tumour cells differ in size to those from normal cells are reporting a real phenomenon. However, we hypothesize that larger particles present in most purified exosome samples represent co-purified contaminating non-exosome debris. These isolation techniques are therefore likely nonspecific and may co-isolate non-exosome material of similar physical properties.
منابع مشابه
Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing
Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are ava...
متن کاملTunable resistive pulse sensing as a tool to monitor analyte induced particle aggregation
Analytical technologies based upon superparamagnetic beads, SPBs, offer a rapid, simple and inexpensive way of separating and purifying the target analyte prior to detection. The SPBs can perform the capture, purification and the signal transduction stages, producing a simple, fast, and sensitive label-free format. Particle aggregation in the presence of the analyte is a common example of such ...
متن کاملNanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure.
Modern resistive pulse sensing techniques can be used to measure nanoparticle electrophoretic mobility, and hence ζ-potential. In contrast to conventional light scattering methods, resistive pulse sensing produces particle-by-particle data. We have used tunable resistive pulse sensing (TRPS) to compare methods for measuring the ζ-potential of carboxylated polystyrene nanoparticles. The five par...
متن کاملQuantification and Size-profiling of Extracellular Vesicles Using Tunable Resistive Pulse Sensing
Extracellular vesicles (EVs), including 'microvesicles' and 'exosomes', are highly abundant in bodily fluids. Recent years have witnessed a tremendous increase in interest in EVs. EVs have been shown to play important roles in various physiological and pathological processes, including coagulation, immune responses, and cancer. In addition, EVs have potential as therapeutic agents, for instance...
متن کاملOptimized exosome isolation protocol for cell culture supernatant and human plasma
Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015